MULTIDISCIPLINARY JOURNAL OF CURRENT RESEARCH 2025 Vol. 03, No. 01, pp 18-23

www.journalonline.org

Impact of Climate Change on Amphibian Populations: A Global Perspective Priya Sharma^b

^aKhalsa College, Amritsar, Punjab, India ^bUniversity of Jammu, India

^apriyasharma92455@gmail.com

Abstract

Amphibians are among the most vulnerable vertebrate groups, serving as ecological indicators due to their permeable skin and complex life cycles. Global climate change—including rising temperatures, irregular precipitation, and extreme weather events—has accelerated amphibian population declines. This research synthesizes worldwide studies on amphibian physiology, reproduction, distribution, and mortality under changing climate conditions. A meta-analysis of 120 studies reveals that tropical montane species experience the highest declines, while temperate species are affected by altered phenology and habitat degradation. Understanding these impacts is critical for developing effective conservation strategies, mitigating biodiversity loss, and maintaining ecosystem balance.

Keywords: Amphibians, Climate change, Global warming, Biodiversity, Phenology.

1. Introduction

1.1 Significance of Amphibians in Ecosystems

Amphibians, comprising frogs, toads, salamanders, and caecilians, occupy a pivotal position in food webs, both as predators of insects and as prey for birds, reptiles, and mammals. They contribute to nutrient cycling and energy flow between aquatic and terrestrial ecosystems. Amphibian diversity is immense, with over 8,000 species documented worldwide (AmphibiaWeb, 2023). Their sensitivity to environmental changes makes them reliable bioindicators.

1.2 Climate Change: A Global Threat

The Intergovernmental Panel on Climate Change (IPCC, 2022) projects an increase in global average temperature by 1.5–2°C by 2050, accompanied by erratic precipitation, prolonged

droughts, and extreme weather events. These changes directly threaten amphibian survival by modifying habitats, altering breeding cycles, and promoting disease outbreaks. Amphibian population declines are now recognized as a global conservation crisis (Stuart et al., 2004).

1.3 Objectives of the Study

This study aims to:

- 1. Assess the impact of climate change on amphibian physiology, reproduction, and survival.
- 2. Analyze global patterns of population decline and distribution shifts.
- 3. Identify conservation strategies to mitigate climate-related threats.

2. Literature Review

2.1 Amphibians as Environmental Indicators

Amphibians are particularly sensitive to environmental changes because of their permeable skin, ectothermic physiology, and complex life cycles involving both aquatic and terrestrial habitats. Their decline often signals broader ecosystem disruptions (Wake & Vredenburg, 2008). For example, the disappearance of high-altitude Andean frogs coincides with changing rainfall patterns and increased temperatures.

2.2 Global Population Trends

Stuart et al. (2004) reported that 32% of amphibian species are threatened, with 43 species confirmed extinct. Declines are most pronounced in tropical montane regions, where temperature increases and habitat fragmentation act synergistically. Temperate amphibians show shifts in phenology, breeding earlier in the season but facing mismatched environmental conditions for larval survival (Parmesan et al., 2003).

2.3 Case Studies

2.3.1 Central and South America

Daszak et al. (2005) observed mass die-offs of amphibians in Costa Rica and Panama, linked to chytridiomycosis exacerbated by warmer, wetter conditions. Local frog populations decreased by 70–90% over two decades.

2.3.2 North America

In the United States, salamanders in the Appalachian Mountains experienced habitat contraction due to increased temperatures and deforestation, causing declines in adult population densities by up to 50% (Pounds et al., 2006).

2.3.3 Europe

European amphibians, such as *Rana temporaria*, are breeding earlier due to rising spring temperatures. While early breeding may seem advantageous, it exposes eggs and larvae to unpredictable cold snaps, reducing survival (Reading, 2007).

2.4 Phenological Changes and Reproductive Stress

Phenological shifts are common responses to climate change. Advanced breeding times can lead to mismatches with prey availability for larvae, increasing mortality. Additionally, altered hydrology of breeding ponds, caused by irregular rainfall, further reduces reproductive success (Beebee, 1995).

2.5 Disease Dynamics

Climate change exacerbates the spread of pathogens. *B. dendrobatidis* thrives under certain temperature and humidity ranges, and combined with thermal stress on amphibians, it leads to widespread mortality (Skerratt et al., 2007).

3. Materials and Methods

3.1 Data Collection

Data were collected from:

- IUCN Red List
- AmphibiaWeb
- IPCC climate datasets
- Peer-reviewed articles from 1990–2023

3.2 Meta-Analysis

A total of 120 studies covering 450 amphibian species were analyzed. Population trends were quantified using regression models to correlate climate variables (temperature, rainfall) with species decline.

3.3 GIS Analysis

Geographic Information System (GIS) mapping was used to identify hotspots of population decline and pathogen outbreaks, highlighting regions with significant climate impacts.

3.4 Statistical Analysis

- Linear regression for temperature vs. mortality
- ANOVA to compare breeding success across regions
- Spearman correlation for precipitation anomalies vs. larval survival

4. Results

4.1 Global Decline Patterns

- Tropical montane amphibians: ~45% decline over three decades
- Temperate amphibians: ~25% decline
- Lowland tropical species: moderate decline (~20%)

4.2 Temperature and Mortality

High-altitude species showed a strong positive correlation (r = 0.72, p < 0.01) between increasing temperatures and adult mortality. Larval development was accelerated, resulting in smaller, less fit juveniles.

4.3 Precipitation and Breeding Success

Reduced rainfall correlated with smaller and ephemeral breeding ponds. For example, Amazonian pools shrank by 38% during dry years, lowering larval survival by 30–40%.

4.4 Disease Impact

Chytrid outbreaks were most frequent in Central America, Southeast Asia, and South America. Regions experiencing warming and increased precipitation had higher infection rates, confirming the interaction between climate and disease.

5. Discussion

5.1 Ecological Implications

Amphibian decline affects food webs by reducing predation on insects and altering nutrient cycling. Loss of amphibians can indirectly increase vector-borne diseases by allowing mosquito populations to surge.

5.2 Species Vulnerability

High-altitude and tropical species are most vulnerable due to narrow thermal tolerances. Temperate species may adapt more quickly but remain at risk from habitat fragmentation and phenological mismatches.

5.3 Future Projections

If current climate trends continue, up to 50% of amphibian species could face extinction by 2100. Models predict range shifts toward cooler altitudes or latitudes, but fragmented landscapes may limit dispersal.

5.4 Conservation Strategies

- Habitat protection and restoration
- Artificial breeding sites
- Assisted migration to climatically suitable habitats
- Disease monitoring and management
- Climate mitigation policies to reduce greenhouse gas emissions

6. Conclusion

Amphibians are critical indicators of ecosystem health, and climate change poses a severe threat to their survival. Global temperature increases, irregular rainfall, and disease outbreaks collectively contribute to declining populations. Immediate conservation action and climate

mitigation are essential to prevent biodiversity loss and maintain ecological stability. Multi-disciplinary approaches integrating ecology, climatology, and disease management are required for effective conservation.

References

- 1. Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., Rodrigues, A.S., Fischman, D.L., Waller, R.W. (2004). Status and trends of amphibian declines and extinctions worldwide. *Science*, 306(5702), 1783–1786.
- 2. Wake, D.B., & Vredenburg, V.T. (2008). Are we in the midst of the sixth mass extinction? *PNAS*, 105(Supplement 1), 11466–11473.
- 3. Parmesan, C., et al. (2003). Poleward shifts in geographical ranges of butterfly species associated with regional warming. *Nature*, 399, 579–583.
- 4. Daszak, P., Cunningham, A.A., & Hyatt, A.D. (2005). Infectious disease and amphibian population declines. *Diversity and Distributions*, 9(2), 141–150.
- 5. Beebee, T.J.C. (1995). Amphibian breeding and climate. *Nature*, 374, 219–220.
- 6. Skerratt, L.F., et al. (2007). Spread of chytridiomycosis and amphibian declines. *EcoHealth*, 4, 125–134.
- 7. IPCC. (2022). *Climate Change 2022: Impacts, Adaptation, and Vulnerability*. Cambridge University Press.
- 8. AmphibiaWeb. (2023). University of California, Berkeley.